Arduino and PLC Communication

Designed and written by: Jason Eddrief

Table of Contents

SNV L= 0 T [d e o (1ot 4o o TSP PSP 3
ComMMUNICATION PrOtOCOLciiiiieiieeit ettt ettt e s bt e sab e st e e sbte e sabee e beeesaseesbeeesareenane 5
F o [V 13 o T PP P RO VPTTOUPRTI 6
YT Ve [T g3 B | = PR 6
X =Tol= TNV T = DT | - P PPPPPPPPPRS 7
(001 0070010 a1 To= 14 [o= S ST PP P UPPTPPPPPTTON 8
ST-200 ..ttt ettt ettt b e bt e eh ettt et e e b e ekt e eh e e eate e be e bt e beeaheeeaeeeate e teeebeeeheesaeesateeabeeabeennes 9
COMMUNICAIONS SETUP cooeieieeeeeeeeeeeeee eeeseeseeeeasesaeeeasassenennneanas 9
= To TNV Y= 1 A o F PPNt 10
RECEIVING (RCV) DAl ..uiiiiiiiiiee ittt ettt et e e tte e e e e bt e e e e ebteeeeebteeeeebteeaesnstseaeasseeeeanssneesanssnsansses 11
TransMitting (XIMT) data....cccueeeciie et e rtee st e st e et e e st e e e s ateeeteeesteesabaeessseesaseeeseeesnseeensees 11
D L=l L) (T g o] £=] = A o] o F OO PP P PSP UPPPPRRPIRE 13
The “Washing IMACRING”oo e e e e et e e e et e e e e et e e e s eatteeeeesteeeeastaeesenraeesanrenas 15

In this system the Arduino functions as both the master controller and as the HMI (LCD shield)
and the S7-200 is the slave. This system communicates on a basic command protocol when the Arduino
sends a command the PLC will reply (regardless of what is sent but more on this later). Because this
system is built to control a motor the plc sends back a speed in RPM that can be displayed on the LCD

The Arduino and the PLC have two ways of communication first is a simple /0 connection and
second Serial. This manual will focus on the later. The S7-200 and the Arduino have a common way of
communicating and that is through serial but requires signal conditioning the s7-200’s single
communication port operates on PPl or also known as RS-485 but they come with a cable (see fig 1.) to

convert the signal to RS-232.

II H
Eﬂﬂ
R5-232 COMM —

]

RE-455 COMM

HEHBHERH

123456782

Ebaud 123 u
162K 110

aTEK 1N
Je4K 000
192K 001
96K 010
48K 01
24K 100
1.2 101

a8

L}]

Spare

1=10 Bit

0=11 Bit
1=Eemuote

0= Local
1=FFI
0=PPIl/Freeport
Spare

Figure 1

The Arduino communicates in serial but at TTL voltage levels so it also requires either a module (fig.3)
(as will be used in this manual) or a full shield. Take note that a RS-485 can also be used just omitting the
above cable and connecting the RS-485 RX+ to pin 3 and TX- to pin 8 and ground to pin 1 (see fig .2).

Simatic S7 - 200
PIN__

(1| N Sy———
390Q; !

3 LY TXDIRXD +
220 Q!

R . TXDIRXD -
390 Q!

5 amcisleazissaed

1 le shiell

cable shield Figure 3
Figure 2

The preferred Arduino to use for this system is the Arduino Mega because it has 4 Serial communication
headers. The Uno can be used but is not preferred because the RX0 and TXO (digital pins 0 and 1
respectively) are hogged by the USB FTDI chip while connected to a computer.

For the s7-200 to communicate properly with the Arduino the PC/PPI cable (see fig. 1) to be set

as follows:
1 2 3 4 5 6 7
0 1 0 0 0 1 0
Table 1

And to communicate with a pc, it needs to be in this configuration:

1

Table 2

The communication in this system is done with start and end character detection and
commands.

In this system the “A” character (41 in hexadecimal) is used as a start character and the “B” character
(42 in hexadecimal) these are used to send a string of data to the PLC only (however with adjustment to
the code it can be used to send information back to the Arduino as well). The commands in this system
are as follows:

u Increases the speed of the motor by 1000 bits.
d Decreases the speed of the motor by 1000 bits.
s Stops the motor.

i turns the test light on

o turns the test light off

The Arduino will send the PLC a command that looks like this: “AsB” the PLC will first see the “A” and
start paying attention to the serial port, and begin recording what it receives in its buffer. Once it
receives the “B” it will stop recording. The PLC can receive a maximum of 255 characters including the
start and end character during any one communication once the end character is received, it will be
loaded into a user specified table in the order it received. The first position in the table will be the
number of characters received and the subsequent positions will be the message so a 4 byte string will
look like this:

4 A h | B

VB100 101 102 103 104

Table 3

Using this it can be assumed that VB102 will always be a command character more on this in the PLC
section.

The Arduino works a little bit differently than the PLC in that It will always receive the serial
string and it’s the users job to catch the string and manipulate it, So it can be useful the code that is in
this manual uses the serialEvent() function to detect the start of a communication and will store each
byte in an array until it receives its stop character which is “;” (like the PLC, this is user defined and can
be changed) once that happens it will compile the array into a string.

Sending Data:
Because of the protocol that was established sending data is fairly simple because the DFRobot
LCD shield has 4 buttons on it the system can be controlled directly with the push buttons like so:

If (button =="s’)

{

Seriall.print(“AsB”);
//stop
}

Because this system is designed with the Mega it uses Seriall which uses pins 18 and 19 (Tx and Rx
respectively) and Serial is occupied by the USB the code is also written in such a way that it will
retransmit an instruction sent from the PC to the PLC using the same method in which it receives data
from the plc in a terminal you would type “s;” to send a stop command to the PLC.

This part of the code takes the compiled string received from the PC and adds the start and stop
characters then transmits the data and clears the string for the next command:

if (pcStringComplete) {
pcString ='A'+ pcString;
pcString +='B';
Seriall.println(pcString);

pcString = "";

pcStringComplete = false;

Receiving Data:

When the Arduino receives data whether it be on Serial or Seriall it will trigger a serial event.
This happens between code scans and will receive data in a buffer during the scan. The code for when it
receives a serial event works like this: When a serial event happens it will hold the program in a loop
with Seriall.available() (which means the Rx pin is active). It will then add each character in an
incrementing array. Once the “;” stop character is received it will take each element of the array and
add it to the end of the plcString, it also stops 3 positions early because first there is 1 character extra
that the plc sends. Second because of the stop character needs to be removed, and third there is an
extra spot because the plcCnt++ happens before the for loop. It then trims any extra blank characters
that may have been added before or after the string. (Note: the pcString is generated in the same way)

void serialEvent1() {
while (Seriall.available()) {
char plcInChar = (char)Seriall.read();
//put the input bytes into an array
plcArray[plcCnt] = plcInChar;
plcCnt++;
//check for end char
if (plcInChar ==";') {
//make a string with the array and remove the end char
for (int i=0; i <= plcCnt-3; i++)
{
plcString += plcArray[i];
}
//trim off extra whitespace from the string
plcString.trim();
plcCnt=0;

plcStringComplete = true;

Communicating:

Above it was demonstrated how the Arduino sends and receives data. The system is designed in
such a way that it increments and decrements speed by 1000 bits (on the PLC side) because of how the
PLC is setup (this will be covered in the next section), the PLC will return the RPM information it has
whenever it gets a full command string i.e. “AsB”. Once it gets the command it will drop everything and
send “ 1234 ;" to the Arduino which converts it to an ASCII string ready to be displayed on the LCD (fig.
4).

if (plcStringComplete)

{

Icd.setCursor(0,1);
lcd.print(" ");
Icd.print(plcString);

lcd.print (" ");

plcString ="";

plcStringComplete = false;

: i e—' D LCD Keypad Shield) 5 EENS
90000000]08066068)
- L6

P ahe et -
EEVDWES YL D RRBM D A K

Figure 4

57-200

The S7-200 communicates with the Arduino on Freeport mode at 9600 baud in this system. An
important note: The PLC must be in stop mode to communicate with the PC when Freeport is enabled.
The Arduino is connected to the PLC via the PPI/PC cable on Com0. The analog output (AQWO) is
connected to the TFU on the washing machine and the analog input (AIWO0) is connected to the speed
output from the dynamo. The PLC will always transmit speed information when it receives any kind of
data from the Arduino

Communications setup

The Freeport memory settings location is SMB30
The system uses Freeport, 9600 baud, 8bit per character and no parity

The s7-200 can accept either 2#01010000 or 16#50 for this configuration

o | 1 o | 1 | o 0 0 0
Protocol bits Baud rate bits Data bit Parity
Table 4
Port 0 Port 1 Description
Format of Format of Freeport mode control byte
SMB30 SMB130 MSB LEE

T i
[plp[dab]o]b]m[m]
SM30.0 and SM130.0and mm: Protocol selection 00 =Point-to-Point Interface protocol
SM30.1 SM130.1 (PPlislave mode)
01 =Freeport protocol
10 =PPl/master mode
11 =Reserved (defaults to PPl/slave mode)
Note: When you select code mm = 10 (PPl master), the S7-200 will become a
master on the network and allow the NETR and NETW instructions to be
executed. Bits 2 through 7 are ignored in PPl modes.

SM30.2 to SM130.2 to bbb: Freeport Baud rate 000 =38,400 baud 100 =2,400 baud
SM30.4 SM130.4 001 =19,200 baud 101 =1,200 baud
010 =5,600 baud 110 =115,200 baud
011 =4,300 baud 111 =57,600 baud
SM30.5 SM130.5 d: Data bits per character 0 =8 bits per character
1 =7 bits per character
SM306and SM1306and pp: Parity select 00 =no parity 10 =no parity
SM30.7 SM130.7 01 =even parity 11 =odd parity
Figure 5

Receive Setup

For this system the receive settings are as follows:

MOV_B

——EN ENO -H

16#E0 <IN QUTSMBE7
Figure 6
SMB87
1 1 1 0 0 0 0 0
Receive Detect Detect Detect Char Message Enable extra
enabled start char | end char line idle timeout timeout break
condition
Table 5

Start character:
SMB88, 16#41 (A)

Stop character:
SMBS89, 16#42 (B)

Max characters that are expected to be received:

SMB 94, 100
SMBET SMBETET Receive Messspge control byte
uzE Les
|EI'I |543 |ED I il --:"m|trnr| I::k[1] |

SMBEE
SMEBED
SNWDD

ST

SMEDR4

Figure 7

en: 0 =Receive Mes=sspe funclion is dissbled.
1 =Receive Mzssspge function is enablad.
The eneble/disablz receive message bit is checked each tims
the RCW instruction is executed.

sz 0 =lgnore SMEZE or SMB183.
1 =Use the walue of SMBS2 or SMB12E to detect start of messags.

ec: O =lgnore SMEER or SMB189.
1 =Use the walue of SMBES or SMB128 to detect end of message.

il O =lgnore SEWID or SO0,
1 =Use the walus of SMWVED or SMWIED to detect an idke line condition.

cime 0 =Timer i= &n inter-character timer.
1 =Timer is & messags timar.

trrr: O =lgnore SRWE2 or SRAVD2.
1 =Terminats receive if the time period in SMWE2 or SMMVD2 is excesded.

bk- O =lgnore bresk conditions.
1 =Use break condition &5 siart of messege detection.

EMB1ER Start of massege characier
EMBETED End of masssge characier

SENMAAED | Kdie line time pericd given in milliseconds. The first charecter received sfter idliz line
tims has expired is the start of 8 new m=essage.

EMWAEZ | Inter-character/message timer time-out welue (in miliszconds). If the time perod is
excaaded, the receive messapge is terminated.

EMBETD4 Fazimum nurmber of characters to be received (1 10 255 bytes).

Mote: This rangs must be sei to the expected maximum buffer size, ewven if the
charscter count message terminstion is not used.

10

Receiving (RCV) Data

RCV

VB2004qTBL
09 PORT

Figure 8

The PLC can receive a maximum of 255 characters including the start and end character during any one
communication. Once the end character is received it will be loaded into a user specified table, in the
order it was received. The first position in the table will be the number of characters received, and the
subsequent positions will be the value so a 3 byte instruction will look like this:

3

A

S

B

VB200

201

202

203

Table 6

Transmitting (XMT) data

XMT

—EN

VB100qTBL

-

<1FCORT

ENO

—

Figure 9

The XMT instruction is fairly simple. It only requires that the Freeport communication be setup properly,
a table with the number of characters to send (first position of the table), and the message itself in the
table. Once an enable signal is sent to the command, it will transmit the message in the table during the
communications step of the cycle. However this is only true when the system is not receiving. So for this
system to be able to transmit, the PLC detects that it has received data, then it will wait for the message
to be complete, wait 10ms (this is to give time for the PPI/PC cables’ buffer to empty), then it will
transmit the data in VB100, and re-enable the RCV instruction.

i.e.:

Vb100 101 102 103 104

Table 7

11

The PLC transmits the contents of VB100 which was collected speed information from AIWO0 or AIW?2
(whichever is working on the PLC)

Metwork 5

SMO.0

— |

get speed and conwvert ta rpm

Network &

convert to int

SMO.0

— |

Figure 10

MOV_W DI =
EN ENO EN Enol
Az Iy ouTlvws00 VW500 I outh
—
DR
EN ENO
VD510 VD510 N OUTIVDS850 VD550
0.078125
— -
MUL_R
Jin ouTlvDsE00
iz
_—
ROUND DLl
EN ENO EN Enof
VD600 1N outlvDeso vDes0 1N outh
ITA
EN ENO H
VW00 TE Y ouT[VEDT
F [3Th

The table is created by predefining the number of characters to transmit (10), then filling the table using
the ITA (integer to ASCIl) command (see fig. 10) in Format ‘0’. Meaning it outputs whole numbers with
no decimal or comma, it will always output 8 Characters. The Arduino stop character “;” is added to the
last position of the table (this is done in the data block of the program).

10

1

2

3

VB100

101

102

103

104

105

106

107

108

109

110

12

Data Interpretation

When the PLC receives data on the serial port it stores it in a table specified by the programmer (as
stated before). To interpret this command the system needs to know what to look for and where. Here
the system uses ==B on VB202 because it is know that the command character will always be at this
location. In fig. 11 the system is checks VB202 if it is an “I” then it enables Q0.1 (the test light). If VB202
is an “0” then it disables the test light.

Network 3
SMO0.0 VB202 QoA
| 1.1 | o | ’
| =B 1 P LS)
i 1
VB202 QoA
|| | o | r
=B 1 P L)
o 1
Figure 11

In fig. 12 the program uses an up/ down counter to set the speed of the motor. So if the PLC gets an “u”
it will increase the count, if it gets a “d” it will decrease the count, and if it gets the “s” command it will
set the counter to 0 which will stop the motor, VB202 is cleared later in the code (fig.13).

VB202 c2
_|==B= = P : Cu CTUD
y
VB202
| 1| | o |
1==B 1 1 P co
VB202
=l | o |
—] == | 1 P R
's
3z4pPVv
Figure 12

13

To create an appropriate output range (+32000 to -32000) the program uses the number from the
counter. It subtracts the count by 32, inverts that number, then multiplies it by 1000 then sends it to
AQWO (not shown here). When it finishes that it clears VB202 with an unused command character (in
this case ‘n’) so the system doesn’t repeatedly increment the counter on each scan.

Network 4

SMO0.0

EN
C24IN1
IN2

+32

SUB_I

ENO

MUL_I

ouTt

=\VW1000

VW1010

4EN

MOV_W
ENO

VW1010

+1000 =

MUL_I

ENO

ouT

VW 1000 <

EN

1IN2

ENOPF

OouTp

FACO

OUTIFVW700

Figure 13

EN

MOV_B

ENO

—

OuUTVB202

14

ACO

The “Washing Machine”

The washing machine is setup using the DC motor module (the SCIM can also be used), the prime
mover/dynamo module, the thyristor module, and the thyristor firing unit and optionally a DC ammeter
to set the current in the field windings.

The motor is setup as in a separately excited configuration with the field winding connected directly to
120V DC output and the armature is connected to the thyristors (see fig. 14) which is connected to the
variable 120VAC.

Figure 14

15

